

Team 309: Sprinter Data Collection

Members

Adam Breindel, EIT

Electrical

Engineer

Systems Engineer

Electrical Engineer

Applications Engineer

Stephanie Damas

Electrical

Engineer

Team Leader

Christian Gazmuri
Electrical &
Computer Engineer

Lead Computer Engineer

Beauponte Mezonlin Electrical Engineer

Lead Electrical Engineer

Sponsor

Professional Advisors:

Robert Hickner, PhD
Michael Ormsbee, PhD, FACSM, FISSN, CSCS

Background

- Sprinting is the action of running over a short period of time.
- Sprinter performance is influenced by many factors such as:
 - Start technique
 - Stride length
 - Stride frequency
- In order for improved performance in sprinting, advancement of data tracking is crucial to understand where certain factors can be improved.

Market Competition

Capability	Devices			
	1080 Sprint	Zepp Play	StatSports	Our Vision
Force	✓	X	X	X
Acceleration	✓	✓	✓	✓
Speed	✓	✓	✓	✓
Stride Length	×	×	×	✓
Stride Frequency	×	×	×	✓
Distance	×	✓	✓	✓
Deceleration	×	X	✓	X
Active Time (Productivity)	×	✓	×	×

Project Scope

Project Description:

A product that improves data tracking for sprinters/runners.

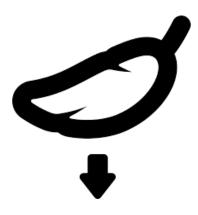
Goals:

- Create an alternative to devices already established for tracking runner data that is cost effective.
- Capture accurate data points.
- Provides similar or improved data sampling for the sprinters/runners.

Targets

Data Measurement

User Interface


Customizable

Affordable

Water Resistant

Lightweight

Major Modules

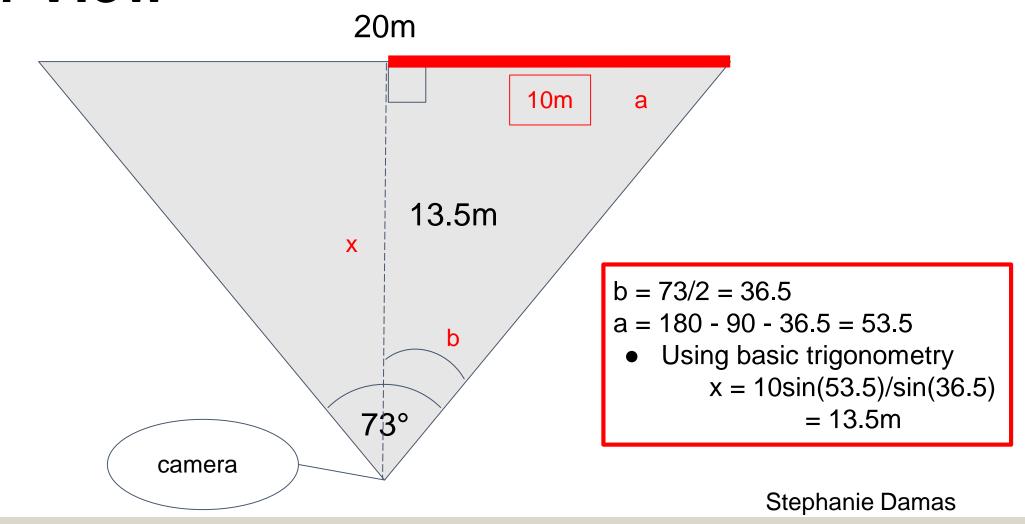
- Accelerometer
- Camera system
- Video/Accelerometer Synchronization
- Program

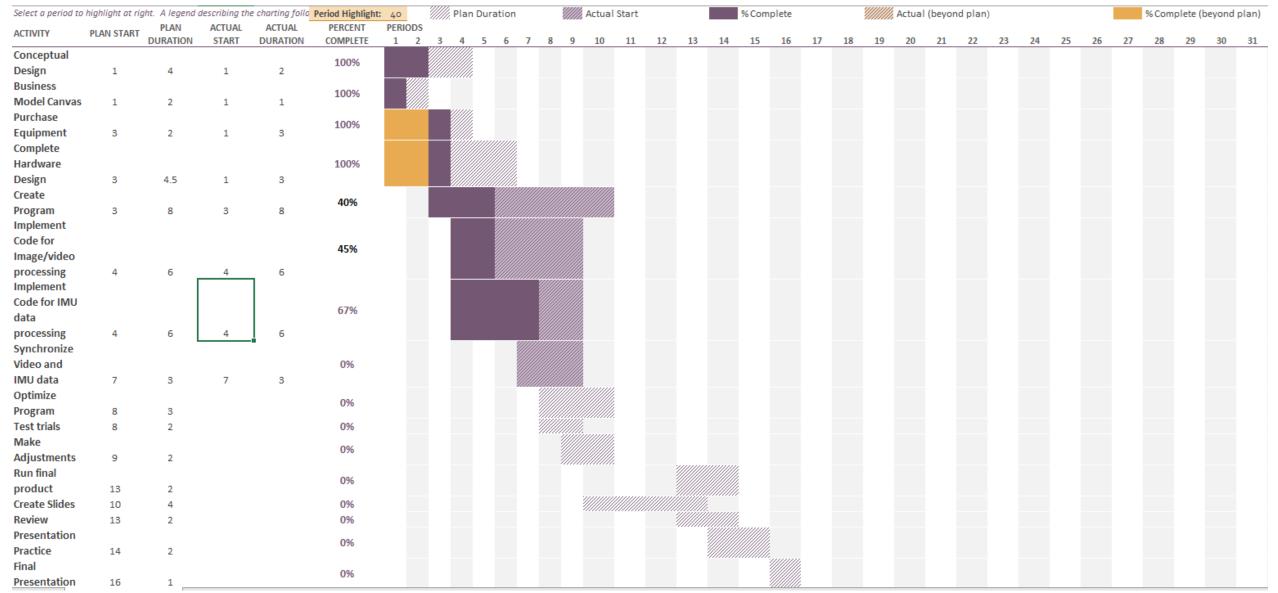
Beauponte Mezonlin

Concept Selection

- Accelerometer: IMU MetaMotion R
- Camera system: Iphone 6s Plus Camera
- Image/video Processing Software Library: OpenCV
- Programming Software: Microsoft Visual Studio

Beauponte Mezonlin


Visualized Design



Stephanie Damas

Field of View

Stephanie Damas

Image Processing

- Downloaded all software needed (C++ and OpenCV libraries)
- Loading video with OpenCV
- Research
 - Obtaining velocity
 - Types of tracking
 - Horizontal stride length
 - Correct number of data points

Adam Breindel

Image Processing

Adam Breindel

Image Processing

- Near completion
 - Obtaining velocity of runner
 - Accurate Start and Finish times of runner (20m)
- More challenging objectives
 - Tracking individual feet of runner
 - Calculating stride length

Adam Breindel

Accelerometer Progress

- Capable of reading accelerometer input data of x,y, and z-axis, and returning total acceleration values, through the use of a calibration program.
- Also calculates the instant velocity with the use of the previous velocity and current acceleration in relation to time.

$$v = v_0 + at$$

Time: 0

Acceleration: -0.497162

Speed: 0

Time: 0.014

Acceleration: -0.243763

Speed: -0.00341268

Time: 0.029

Acceleration: -0.522622

Speed: -0.011252

Time: 0.044

Acceleration: -0.702636

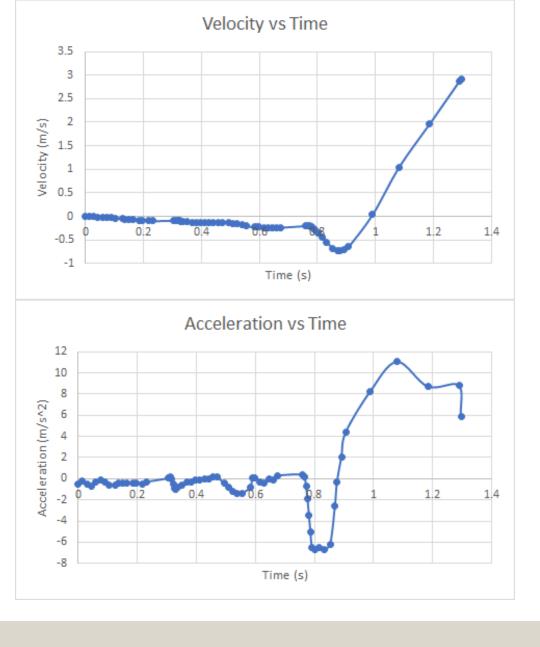
Speed: -0.0217916

Time: 0.059

Acceleration: -0.308952

Speed: -0.0264258

Time: 0.075


Acceleration: -0.0809183

Speed: -0.0277205

Accelerometer Next Steps

- Graphing of outputs for the user in order to visually understand the data.
- Clear indicators regarding where outputs occur in terms of position.
- More test samples to determine best method of getting stride frequency.

Accelerometer Next Steps

- Based on the graphs created from a short sample run, velocity and acceleration show direct correlation, meaning program calculations are correct.
- Ideal graphs would look similar to the ones shown on the left, except extended out further for a clearer visualization.
- When synchronizing with the video, showing checkpoints on the graph regarding the distance the runner has reached in collaboration with the data provided.

Moving Forward

- Thursday February 20, 2020 at 2:30 PM
 - Rickards High School Track and Field Team Practice
 - ensure accurate distance measurement (20m)
- Meet with Faculty Advisors
 - analyze methods of collecting stride length with OpenCV
 - review synchronization tips
 - discuss best means for showing outputs
- Programming
 - clean up code for future use

Questions

